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AbstracGA simple fast Fourier transformation (FFT) algorithm has been 
specifically adapted to calculate the experimental radial distribution function. 
The number of equi-spaced data points must be a power of two [N = 2“ for 
integer n] and must be greater than the Nyquist frequency [ N  = 2(fmU) 
(8max)/2s]. When properly defined, the data set is expanded as an odd func- 
tion. The greatest advantage of the FFT algorithm is its internal consistency- 
the ability to exactly transform back to the original domkin. 

1. Introduction 

The history of the development of the “fast Fourier transform” algorithm 
(FFT) pivots about the early work of Danielson and Lanczos.l They 
showed how to calculate a Fourier transform to obtain a known accuracy 
from a minimum amount of effort on a desk calculator. Furthermore, they 
exemplified the theory by calculating the radial distribution function of 
molten lithium chloride. Now that their algorithm has been adapted to 
digital computers and popularized by Cooley and Tukey, Sande, and 
others,2*3 its use has revolutionized many other areas of Fourier analysis. 
Thus, a reexamination of its utility in calculating the experimental radial 
distribution function of liquids is timely. 

The main topic of this paper is the calculation of the radial distribution 
function by means of a small FFT.‘ However, this paper will also briefly 
contrast two other methods of calculating the central Fourier transform 
of liquid diffraction analysis. The h t  is a trapezoidal approximation to 
the diffraction integral, similar to that used by many inveatigatom. The 
second is a discrete summation routine adapted from Guiniers and repre- 
sentative 9f a number of summation techniques. Neither of these two 
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46 A. J. STARSHAK AND R.  D. LAWEN 

other methods has been optimized; they are simply included for comparison 
purposes. The average times for the transformations and their inverses aro 
given in Table 1. But far more important, the internal consistency-the 
ability to accurately transform back to the original domain again--is given 
in Table 2 and Fig. 1. 

Tmm 1 

Run Times (Sec) 

' N =  64 128 192 256 
1 

I1 
(Trapezoidal) 24.0 102.7 213.6 380.0 

Summation) 
6.2 25.0 56.5 101.5 

PFT)  1.0 4.3 18.8 38.5 

All times are relative and the average of the Fourier trans- 
formation and its inverse on an IBM 360/40. The times 
include all peripheral calculations to go from {ai(s)} t o  
{TO(?)} or from {rD(r)} to (&(a)). 

I11 

A 

In the theory of liquid diffraction analysis, the Fourier integral can be 

where i ( s )  is the intensity of X-radiation scattered a t  s = 4 n / F  sin 0, 
properly corrected for polarization, incoherent scattering, etc., and 
normalized to electron units.6 

The evaluation of such an integral on a digital computer involves a t  
least two approximations. The first is the approximation of the infinite 
integral by a finite data set: 

The magnitude of this approximation is proportional to the value of 
si(smax). The second is the numerical method used to approximate a 
continuous integral by a discrete quadrature: 

2As N - l  
r,,D(r,,) = - C ski(s,) sin r,sk 

?7 k - I  
(3) 
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Figure 1 

I& is in this context of numerical approximations that the FFT has such 
remarkable properties, for the algorithm provides a prescription to expand 
8 discretely Bampled continuous function over a complete set of ortho- 
normal exponential functions. Tho Fourier coefficients so obtained recon- 
stitute the discretely sampled function exactly and provide for a least- 
s q m  interpolation formula for all intervening points. To illustrate, 
therefore, both the speed and accuracy of the FIT, we first consider for 
comparison two other algorithms. 
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48 A. J. STARSHAE AND R. D. LARSEN 

2. Other Transformation Algoridhms 

The first method of numerical approximation is a trapezoidal integra- 
tion algorithm (I) adapted for non-equispaced increments: 

where As, = (s,+~ - Sk-1) for 2 < k < N - 1. 

A second approximation method (11) adapted from Guinies has an 
advantage in being specifically designed for discrete summations but ha8 
the disadvantage of requiring equispaced data points. (The non-equispaced 
data are interpolated by means of a Lagrangian interpolation formula.) 
This approximation can be written as: 

where A s  = (sN - s , ) / (N  - 1). 

3. Fast Fourier Transform Algorithm 

The appropriate formula for the FFT in the liquid diffrmtion cortext is: 

2As IR-' (111) r,D(r,) = - .s;i(s;) e + 2 n i n k f l N ,  n = 0, 1 ... N - 1 (6) 
77 k-a 

where A s  = (sN - s , ) / N .  Observe that the complex exponential transform 
is used here in contrast to the Danielson-Lanczos presentation which used 
just the sine transform. The use of all N roots of unity around the complex 
unit circle is an essential element in both the theory and execution of the 

I n  implementing the FFT, however, additional problems arise. Not the 
least of these is the fact that linear frequency (not radial frequency) is 
involved : s' = 2h-l sin 8 = s/277. Secondly, there are strict limitations on 
the number of equispaced data points required to give the desired trans- 
form. Finally, the waveform must be expanded as an odd function. How 
each one of these factors is treated is briefly described below. 

The first difficulty with the FFT is the use of 8' = 2A-1 sin 8 = s/2n. 
Although it a simple matter to divide ski (+)  by 2n, the argument of tht- 
exponential is changed, making i t  very sensitive to the density of data 
points used to describe the intensity function. 
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A FAST FOURIER TRANSFORM ALGORITHM 49 

The second problem concerm the number of data points. The simple 
form of the FFT which was used requires a number of points equal to a 
power of two : N .= 2". This number is intimately connected with both the 
length of the original data set and the desired length of the transform by 
means of the Nyquist frequency. In the data set used,' the maximum value 
of s wit8 smax = 1 5 . 8 2 4 ~  15.708 = 577. The Nyquist relation states that the 
sampling must be a t  least twice the highest frequency : 

N = 2(rmax) (smax)/277 (7) 
So, with N = 26 = 64, the maximum value of r was r,,, = 12.8A, giving 
Ar = 0.2 A. 

By simply increasing the record length to N = 27 == 128 and keeping 
sm, = 15.708A-l, the same Ar is obtained, except rmax is increased to 
25.6A, extended with (noisy) zeros. Accordingly, by adding on zeros to 
double smax to 3 t ,416 A-l, the number of data points defining rD(r) can be 
doubled. (The process can be continued for N = 28 = 256, but 768 zeros 
must be attached to the si(s) curve to increase the density of data points 
for rD(r).  In  the end, N = 256 requires a transform of 2048 data points.) 

When the input data set is properly defined, the function can be 
expanded as an odd function, not from - N < k < N - 1, but from 
0 < k < 2N - 1. Thus, the transformation is actually that of the negative 
of a normal expansion, requiring a negative compensation a t  the output. 

4. Discussion of Transformation Algorithms 

The data set used for these comparisons was taken from a report of 
M. D. Danford.' The original 121 values of I ( s )  were measured from 
9 = 1.233 (0 = 4.0") to s = 15.824 (0 = 63.5'). These values were : (1 )  extra- 
polated 80 that 0.0 < 8 < 16.0, (2) normalized to electron units,6 (3) then 
interpolated to give equispaced data points a t  densities of 64, 128, 192, 
and 256 per 15.708A-l. All three methods used the same input data, so 
that the differences are characteristic of the algorithms alone. 

The results of the time-trials are shown in Table 1. These times, which 
include all peripheral calculations necessary to transform from equispaced 
(s, s i (s ) }  to {r ,  rD( r ) }  and back, are the averages of the transformation and 
its inverse. The adjective "fast" is appropriate for the FFT, especially 
when considering that an extended number of 512 and 2048 data points 
had to be transformed to get a r d i a l  distribution function for N = 128 
and 256, respectively. 
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50 A. J. STARSHAK AND R .  D. LARSEN 

The relativc accuracies of the algorithms are shown in Table 2. The set 
of N equispaced {s, si(s)) was transformed to {r ,  rD(r)} and back to 
{s, $(3)}. The mean difference N-1 x [ s i ( ~ ) ~  - G(S)~] and the standard 
deviation (N-l)-I X[S~(R)~ - ~ i ( s ) ~ ] 2  are reported. The limit of accuracy 
of the IBM 360/40 used is about 6.5 significant figures for simple additions, 
so deviations greater than 1 x can be attributed to the algorithm, as 
seen in Fig. 1.  

A 

TABLE 2 

Accuracy of Transform 

N =  64 128 192 256 
I 4.7 x lo-' 3.4 x lo-' 5.0 x 4.2 x lo-' 

(Trapezoidal) *l.O x 10-1 *2.2 x 10-2 k1.5 x 10-8 k1.6 x lo-* 

I1 1.2 x lo-' 1.8 x 1.7 x 2.8 x 
Summation) 57.9 x lo-' *1.5 x lo-' x lo-' &1.6 x lo-' 

111 0.3 x 10-0 0.4 x 10-o 0.4 x 0.4 x lo-# 
* l . O  x 10-o *1.4 x 10-o i1.7 x lo-' *1.8 x lo-' (FFT) 

The mean difference and standard deviation between the original {&(a)} and 
twice transformed {&(a)} are presented. Values greater than 1 x lo-' can be 
attributed to the algorithm. 

A 

The mean difference for a simple trapezoidal integration (I) becomes 
acceptable a t  N = 192 data points ; the Guinier summation algorithm (11) 
has an acceptably small mean difference when N = 128 data points. 
However, the confidence level for both would be rather low with a standard 
deviation O(1W).  The mean difference of the FPT employed (111) is 
uniformly O( lo-') with a standard deviation O( This great reliability 
is perhaps the most important feature of the algorithm. As the complex 
exponential e+Pn*nklZN is a complete set (modulo 2 N )  for 0 < n, k < 2N - 1,  
we observe the fact that  a discretely sampled function can be expanded 
exactly over a complete orthonormal basis set. 

This order of internal consistency allows the transformation from one 
domain to the other almost indiscriminately. Thus, a whole class of decon- 
volutjon procedures is possible with this fast Fourier transformation 
algorithm. 
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